LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

THIRD SEMESTER – **APRIL 2023**

UMT 3401 – MATHEMATICS FOR CHEMISTRY - II

Date: 12-05-2023 Dept No

Da Tir	nte: 12-05-2023 Dept. No. Max. : 100 Marks me: 01:00 PM - 04:00 PM								
	SECTION A - K1 (CO1)								
	Answer ALL the Questions(10 x 1 = 10)								
1.	Answer the following.								
a)	Define Gamma function.								
b)	Give an example for an ordinary differential equation.								
c)	Define Laplace Transform.								
d)	Write Newton's backward difference formula.								
e)	State Lagrange's Theorem								
2.	Fill in the blanks.								
a)	denotes Jacobian of u, v with respect to x, y .								
b)	The linear differential equation of the first order is of the form								
c)	If $L(f(t)) = F(s)$, then $L(f(at)) = $								
d)	is a technique of obtaining the value of a function for any intermediate values of the								
	independent variable.								
e)	A subset <i>H</i> of group <i>G</i> is called a subgroup of <i>G</i> if <i>H</i> forms a with respect to the								
	binary operation in G.								
	SECTION A - K2 (CO1)								
	Answer ALL the Questions(10 x 1 = 10)								
3.	Choose the correct answer for the following.								
a)	$\int_{0}^{\frac{\pi}{2}} \sin^{7}\theta \cos^{5}\theta d\theta = \underline{\qquad}$								
	(i) a) 120 b) $\frac{1}{120}$ c) 140 d) $\frac{1}{140}$								
b)	Clairant's equation is of the form a) $z = \frac{dy}{dx}x + c$ b) $z = px + qy + f(p,q)$								

	c) $z = \frac{x}{y} + \frac{y}{q} + c$								
	d) $z = px + qy + \frac{p}{x} + \frac{q}{y}$								
c)	Which is correct?								
	(a) $L(f'(t)) = SL(f(t))$								
	(b) $L(f'(t)) = SL(f(t)) - f(0)$								
	(c) $L(f'(t)) = S^2 L(f(t))$								
	(d) $L(f'(t)) = S^2 L(f(t)) - f(0)$								
	Gauss Jordan method is method								
	(a) Iterative (b) Direct								
d)	(c) Indirect (d) None								
e)	If <i>n</i> is any integer and $(a, n) = 1$ then, $a^{\phi(n)} \equiv$								
	(a) $o(mod n)$ (b) $1(mod n)$								
	(c) $n(mod n)$ (d) $a(mod n)$								
4.	True or False.								
a)	$\Gamma(n+1) = n!$ when <i>n</i> is a positive integer.								
b)	If the auxiliary equation has two real and distinct roots m_1 and m_2 in a second order Linear								
	differential equation, then $y = e^{m_1 x}$ and $y = e^{m_2 x}$ are solutions.								
c)	$t^n f(t)$ is bounded near $t = 0$ for some number $n \ge 0$ is one of the sufficient conditions for the								
	existence of Laplace Transforms.								
d)	Gauss Seidal iteration method converges only for special system of equations.								
e)	A group is said to an abelian group if it does not satisfy commutative property.								
	SECTION B - K3 (CO2)								
	Answer any TWO of the following $(2 \ge 10 = 20)$								
5.	By changing the order of integration, evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dx dy$.								
6.	Let G denote the set of all matrices of the form $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$ where $x \in R^*$. Prove that G is a group								
	under matrix multiplication.								
7.	Evaluate								
	(i) $L(t^3 - 3t^2 + 2).$								
	(ii) $L(\sin^2 2t)$.								

8.	Find a root of the equation $x^3 - x - 11 = 0$ correct to four decimal places using bisection method.									
SECTION C – K4 (CO3)										
	Answer any TWO of the following									
9.	Determine L^{-1}									
10.	Evaluate $\iiint xyz dxdydz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.									
11.	Solve $(D^2 + D + 1)y = x^2$.									
12.	Solve using Gauss Elimination method									
	2x + 3y - z = 5									
	4x + 4y - 3z = 3									
	2x - 3y + 2z = 2									
SECTION D – K5 (CO4)										
	Answer any O	NE of the fol	lowing				$(1 \times 20 = 20)$			
13.	The amount A of	of a substance	remaining in	a reacting sy	stem after an	interval of tir	ne <i>t</i> in a certain			
	chemical experiment is tabulated below.									
	1	[]				11]			
		t(min)	2	5	8	11				
		A(gm)	94.8	87.9	81.3	75.1				
	Obtain the value of A when $t = 9$ using Newton's backward interpolation.									
14.	State and prove the relationship between beta and gamma functions.									
	I									
			SECTIO	N E – K6 (C	05)					
	Answer any O	NE of the fol	lowing				$(1 \times 20 = 20)$			
15.	Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$ given that $y = \frac{dy}{dt} = 0$ when $t = 0$.									
16.	(i) Find the orde	er of -1 and	3 in (R^*, \cdot)							
	(ii) Find the ord	ler of 2 & 3 in	(<i>Z</i> ₈ ,⊕)							
	(iii) Find all the	left cosets of	{0,3,6,9} in	(Z ₁₂ ,⊕)						
	(iv) Find all the	generators of	the cyclic gr	$\operatorname{roup}(Z_8, \oplus)$						
	(v) Why $(N, +)$ is not a group?									
##########										
########										