LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - APRIL 2023

UMT 3401 - MATHEMATICS FOR CHEMISTRY - II

Date: 12-05-2023
Time: 01:00 PM - 04:00 PM

Max. : 100 Marks

SECTION A - K1 (CO1)	
	Answer ALL the Questions ($10 \times 1=10$)
1.	Answer the following.
a)	Define Gamma function.
b)	Give an example for an ordinary differential equation.
c)	Define Laplace Transform.
d)	Write Newton's backward difference formula.
e)	State Lagrange's Theorem
2.	Fill in the blanks.
a)	___ denotes Jacobian of u, v with respect to x, y.
b)	The linear differential equation of the first order is of the form__.
c)	If $L(f(t))=F(s)$, then $L(f(a t))=$
d)	\qquad is a technique of obtaining the value of a function for any intermediate values of the independent variable.
e)	A subset H of group G is called a subgroup of G if H forms a \qquad with respect to the binary operation in G.
	SECTION A - K2 (CO1)
	Answer ALL the Questions $\quad(10 \times 1=10)$
3.	Choose the correct answer for the following.
a)	$\int_{0}^{\frac{\pi}{2}} \sin ^{7} \theta \cos ^{5} \theta d \theta=$ \qquad (i) a) 120 b) $\frac{1}{120}$ c) 140 d) $\frac{1}{140}$
b)	Clairant's equation is of the form a) $z=\frac{d y}{d x} x+c$ b) $z=p x+q y+f(p, q)$

c) $z=\frac{x}{y}+\frac{y}{q}+c$
d) $z=p x+q y+\frac{p}{x}+\frac{q}{y}$
c) Which is correct?
(a) $L\left(f^{\prime}(t)\right)=S L(f(t))$
(b) $L\left(f^{\prime}(t)\right)=S L(f(t))-f(0)$
(c) $L\left(f^{\prime}(t)\right)=S^{2} L(f(t))$
(d) $L\left(f^{\prime}(t)\right)=S^{2} L(f(t))-f(0)$

Gauss Jordan method is \qquad method.
(a) Iterative
(b) Direct
(c) Indirect
(d) None
d)
e) If n is any integer and $(a, n)=1$ then, $a^{\phi(n)} \equiv$ \qquad
(a) $o(\bmod n)$
(b) $1(\bmod n)$
(c) $n(\bmod n)$
(d) $a(\bmod n)$

4. True or False.

a) $\Gamma(n+1)=n$! when n is a positive integer.
b) If the auxiliary equation has two real and distinct roots m_{1} and m_{2} in a second order Linear differential equation, then $y=e^{m_{1} x}$ and $y=e^{m_{2} x}$ are solutions.
c) $t^{n} f(t)$ is bounded near $t=0$ for some number $n \geq 0$ is one of the sufficient conditions for the existence of Laplace Transforms.
d) Gauss Seidal iteration method converges only for special system of equations.
e) A group is said to an abelian group if it does not satisfy commutative property.

> SECTION B - K3 (CO2)

	Answer any TWO of the following $\quad(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0)}$
5.	By changing the order of integration, evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d x d y$.
6.	Let G denote the set of all matrices of the form $\left(\begin{array}{ll}x & x \\ x & x\end{array}\right)$ where $x \in R^{*}$. Prove that G is a group under matrix multiplication.
7.	Evaluate (i) $L\left(t^{3}-3 t^{2}+2\right)$. (ii) $L\left(\sin ^{2} 2 t\right)$.

8.

Find a root of the equation $x^{3}-x-11=0$ correct to four decimal places using bisection method.

SECTION C - K4 (CO3)

	Answer any TWO of the following $\quad(\mathbf{2 x 1 0}=\mathbf{2 0})$
9.	Determine $L^{-1}\left(\frac{s}{s^{2} a^{2}+b^{2}}\right)$.
10.	Evaluate $\iiint x y z d x d y d z$ taken through the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
11.	Solve $\left(D^{2}+D+1\right) y=x^{2}$.
12.	Solve using Gauss Elimination method $2 x+3 y-z=5$ $4 x+4 y-3 z=3$ $2 x-3 y+2 z=2$

SECTION D - K5 (CO4)
Answer any ONE of the following
($1 \times 20=20$)
13.

The amount A of a substance remaining in a reacting system after an interval of time t in a certain chemical experiment is tabulated below:

$t(\mathrm{~min})$	2	5	8	11
$A(g m)$	94.8	87.9	81.3	75.1

Obtain the value of A when $t=9$ using Newton's backward interpolation.
14. State and prove the relationship between beta and gamma functions.

SECTION E - K6 (CO5)

	Answer any ONE of the following \quad (1 x 20 = 20)
15.	Solve the equation $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3 y=\sin t$ given that $y=\frac{d y}{d t}=0$ when $t=0$.
16.	(i) Find the order of -1 and 3 in $\left(R^{*}, \cdot\right)$ (ii) Find the order of $2 \& 3$ in $\left(Z_{8}, \oplus\right)$ (iii) Find all the left cosets of $\{0,3,6,9\}$ in $\left(Z_{12}, \oplus\right)$ (iv) Find all the generators of the cyclic group $\left(Z_{8}, \oplus\right)$ (v) Why $(N,+)$ is not a group?

